Synchronization in Operating Systems
1. Race Condition

A race condition occurs when multiple processes access and manipulate shared data concurrently,
and the outcome depends on the sequence of execution.

Example:
e Two processes, P1 and P2, increment a shared counter.

e If both read the value before one updates it, they may overwrite each other's update,
leading to incorrect results.

Solution: Proper synchronization mechanisms are needed to avoid race conditions.

2. Critical Section Problem
A critical section is a part of a program where shared resources (data, files, etc.) are accessed.
Solution Requirements (Critical Section Problem Conditions)

1. Mutual Exclusion — Only one process can be in its critical section at a time.

2. Progress — If no process is in the critical section, others should proceed.

3. Bounded Waiting — No process should wait indefinitely to enter the critical section.

3. Peterson’s Algorithm
A software-based solution to ensure mutual exclusion in a two-process system.
Working of Peterson’s Algorithm
e Uses two variables:
1. flag[i] = true (Indicates process wants to enter)
2. turn =j (Indicates the other process's turn)
Algorithm
For process PO:
cpp
CopyEdit

flag[0] = true;

turn=1;
while (flag[1] && turn ==1); // Wait
// Critical Section
flag[0] = false; // Exit critical section
For process P1:
cpp
CopyEdit
flag[1] = true;
turn=0;
while (flag[0] && turn ==0); // Wait
// Critical Section
flag[1] = false; // Exit critical section
Advantages:

e Ensures mutual exclusion.

e Works only for two processes.

4. Bakery Algorithm
A generalization of Peterson’s Algorithm for multiple processes.
Concept:
e Each process takes a number like a bakery queue system.
e The process with the smallest number enters the critical section first.
Algorithm Steps
1. Assign each process a unique number.
2. Compare numbers to decide execution order.

3. If two numbers are equal, process IDs break ties.

5. Synchronization Hardware

Modern processors provide hardware-level solutions for synchronization.
Locking Mechanisms
1. Test and Set (TSL) Instruction
o Atomically checks and modifies a memory location.
2. Compare and Swap (CAS)
o Compares a value and updates only if unchanged.
3. Disable Interrupts

o Prevents context switching to ensure atomic execution.

6. Synchronization Software Tools
1. Mutex Lock

A Mutex (Mutual Exclusion Lock) is a binary lock (0 or 1) used to ensure only one process accesses a
resource at a time.

Operations
e lock() — Acquires the lock.
e unlock() — Releases the lock.
Example:
cpp
CopyEdit
pthread_mutex_t lock;
pthread_mutex_lock(&lock);
// Critical section

pthread_mutex_unlock(&lock);

2. Semaphore
A semaphore is an integer variable used to control access to shared resources.
Types of Semaphores

1. Binary Semaphore (O or 1)

o Works like a Mutex.
2. Counting Semaphore (0 to N)
o Allows multiple processes to access a resource.
Semaphore Operations
e Wait (P) Operation:
cpp
CopyEdit
wait(S) {

while (S <= 0); // Busy wait

e Signal (V) Operation:
cpp
CopyEdit
signal(S) {

S=S+1;

7. Classic Synchronization Problems
1. Bounded Buffer Problem (Producer-Consumer)
e Producers generate items and place them in a buffer.
e Consumers remove items and process them.
e Issues:
o Buffer overflow (producer adds when full).
o Buffer underflow (consumer removes when empty).
Solution:

e Use semaphores to synchronize access.

cpp
CopyEdit

Semaphore empty = N; // Number of empty slots
Semaphore full =0; // Number of filled slots

Semaphore mutex = 1; // Mutual exclusion

Producer:
wait(empty);
wait(mutex);

add item to buffer;
signal(mutex);

signal(full);

Consumer:

wait(full);

wait(mutex);

remove item from buffer;
signal(mutex);

signal(empty);

2. Readers-Writers Problem
e Readers can read simultaneously.
e Writers need exclusive access.
Solution:
e Maintain reader count.

e Ensure writers get exclusive access.

cpp

CopyEdit
Semaphore mutex = 1; // Mutual exclusion for modifying reader count
Semaphore wrt=1; // Control access for writers

int read_count = 0;

Reader:

wait(mutex);

read_count++;

if (read_count == 1) wait(wrt);

signal(mutex);

perform reading;

wait(mutex);
read_count--;
if (read_count == 0) signal(wrt);

signal(mutex);

Writer:
wait(wrt);
write operation;

signal(wrt);

3. Dining Philosophers Problem
¢ N philosophers sit around a table.
e Each has one fork; needs two forks to eat.

e Issues: Deadlock, starvation.

Solution:

e Use semaphores for forks.

e Limit philosophers eating at once.
cpp
CopyEdit

Semaphore fork[N];

Philosophert(i):
wait(forkl[i]);
wait(fork[(i+1)%N]);
eat();

signal(fork[i]);

signal(fork[(i+1)%N]);

8. Monitor
A monitor is a high-level synchronization construct that encapsulates:
e Shared data
e Operations on data
e Synchronization mechanisms
Example of Monitor in C++
cpp
CopyEdit
monitor SharedBuffer {
int buffer;

condition full, empty;

void insert(int item) {

if (buffer is full) wait(full);
add item;

signal(empty);

int remove() {
if (buffer is empty) wait(empty);
remove item;

signal(full);

9. Synchronization in Windows

Windows provides several synchronization tools:

Mutexes (CreateMutex)

Semaphores (CreateSemaphore)

Events (CreateEvent)

Critical Sections (EnterCriticalSection)
Example: Using Windows Mutex

cpp

CopyEdit

HANDLE mutex = CreateMutex(NULL, FALSE, NULL);
WaitForSingleObject(mutex, INFINITE);

// Critical Section

ReleaseMutex(mutex);

Conclusion

¢ Synchronization ensures correct execution of concurrent processes.
e Race conditions must be avoided using locks, semaphores, and monitors.

e Classic problems demonstrate real-world challenges in process coordination.

