
Synchronization in Operating Systems

1. Race Condition

A race condition occurs when multiple processes access and manipulate shared data concurrently,

and the outcome depends on the sequence of execution.

Example:

 Two processes, P1 and P2, increment a shared counter.

 If both read the value before one updates it, they may overwrite each other's update,

leading to incorrect results.

Solution: Proper synchronization mechanisms are needed to avoid race conditions.

2. Critical Section Problem

A critical section is a part of a program where shared resources (data, files, etc.) are accessed.

Solution Requirements (Critical Section Problem Conditions)

1. Mutual Exclusion – Only one process can be in its critical section at a time.

2. Progress – If no process is in the critical section, others should proceed.

3. Bounded Waiting – No process should wait indefinitely to enter the critical section.

3. Peterson’s Algorithm

A software-based solution to ensure mutual exclusion in a two-process system.

Working of Peterson’s Algorithm

 Uses two variables:

1. flag[i] = true (Indicates process wants to enter)

2. turn = j (Indicates the other process's turn)

Algorithm

For process P0:

cpp

CopyEdit

flag[0] = true;

turn = 1;

while (flag[1] && turn == 1); // Wait

// Critical Section

flag[0] = false; // Exit critical section

For process P1:

cpp

CopyEdit

flag[1] = true;

turn = 0;

while (flag[0] && turn == 0); // Wait

// Critical Section

flag[1] = false; // Exit critical section

Advantages:

 Ensures mutual exclusion.

 Works only for two processes.

4. Bakery Algorithm

A generalization of Peterson’s Algorithm for multiple processes.

Concept:

 Each process takes a number like a bakery queue system.

 The process with the smallest number enters the critical section first.

Algorithm Steps

1. Assign each process a unique number.

2. Compare numbers to decide execution order.

3. If two numbers are equal, process IDs break ties.

5. Synchronization Hardware

Modern processors provide hardware-level solutions for synchronization.

Locking Mechanisms

1. Test and Set (TSL) Instruction

o Atomically checks and modifies a memory location.

2. Compare and Swap (CAS)

o Compares a value and updates only if unchanged.

3. Disable Interrupts

o Prevents context switching to ensure atomic execution.

6. Synchronization Software Tools

1. Mutex Lock

A Mutex (Mutual Exclusion Lock) is a binary lock (0 or 1) used to ensure only one process accesses a

resource at a time.

Operations

 lock() – Acquires the lock.

 unlock() – Releases the lock.

Example:

cpp

CopyEdit

pthread_mutex_t lock;

pthread_mutex_lock(&lock);

// Critical section

pthread_mutex_unlock(&lock);

2. Semaphore

A semaphore is an integer variable used to control access to shared resources.

Types of Semaphores

1. Binary Semaphore (0 or 1)

o Works like a Mutex.

2. Counting Semaphore (0 to N)

o Allows multiple processes to access a resource.

Semaphore Operations

 Wait (P) Operation:

cpp

CopyEdit

wait(S) {

 while (S <= 0); // Busy wait

 S = S - 1;

}

 Signal (V) Operation:

cpp

CopyEdit

signal(S) {

 S = S + 1;

}

7. Classic Synchronization Problems

1. Bounded Buffer Problem (Producer-Consumer)

 Producers generate items and place them in a buffer.

 Consumers remove items and process them.

 Issues:

o Buffer overflow (producer adds when full).

o Buffer underflow (consumer removes when empty).

Solution:

 Use semaphores to synchronize access.

cpp

CopyEdit

Semaphore empty = N; // Number of empty slots

Semaphore full = 0; // Number of filled slots

Semaphore mutex = 1; // Mutual exclusion

Producer:

wait(empty);

wait(mutex);

add item to buffer;

signal(mutex);

signal(full);

Consumer:

wait(full);

wait(mutex);

remove item from buffer;

signal(mutex);

signal(empty);

2. Readers-Writers Problem

 Readers can read simultaneously.

 Writers need exclusive access.

Solution:

 Maintain reader count.

 Ensure writers get exclusive access.

cpp

CopyEdit

Semaphore mutex = 1; // Mutual exclusion for modifying reader count

Semaphore wrt = 1; // Control access for writers

int read_count = 0;

Reader:

wait(mutex);

read_count++;

if (read_count == 1) wait(wrt);

signal(mutex);

perform reading;

wait(mutex);

read_count--;

if (read_count == 0) signal(wrt);

signal(mutex);

Writer:

wait(wrt);

write operation;

signal(wrt);

3. Dining Philosophers Problem

 N philosophers sit around a table.

 Each has one fork; needs two forks to eat.

 Issues: Deadlock, starvation.

Solution:

 Use semaphores for forks.

 Limit philosophers eating at once.

cpp

CopyEdit

Semaphore fork[N];

Philosopher(i):

wait(fork[i]);

wait(fork[(i+1)%N]);

eat();

signal(fork[i]);

signal(fork[(i+1)%N]);

8. Monitor

A monitor is a high-level synchronization construct that encapsulates:

 Shared data

 Operations on data

 Synchronization mechanisms

Example of Monitor in C++

cpp

CopyEdit

monitor SharedBuffer {

 int buffer;

 condition full, empty;

 void insert(int item) {

 if (buffer is full) wait(full);

 add item;

 signal(empty);

 }

 int remove() {

 if (buffer is empty) wait(empty);

 remove item;

 signal(full);

 }

};

9. Synchronization in Windows

Windows provides several synchronization tools:

 Mutexes (CreateMutex)

 Semaphores (CreateSemaphore)

 Events (CreateEvent)

 Critical Sections (EnterCriticalSection)

Example: Using Windows Mutex

cpp

CopyEdit

HANDLE mutex = CreateMutex(NULL, FALSE, NULL);

WaitForSingleObject(mutex, INFINITE);

// Critical Section

ReleaseMutex(mutex);

Conclusion

 Synchronization ensures correct execution of concurrent processes.

 Race conditions must be avoided using locks, semaphores, and monitors.

 Classic problems demonstrate real-world challenges in process coordination.

